VASAVI COLLEGE OF ENGINEERING (Autonomous), HYDERABAD

B.E. (Civil Engg.) III Year II-Semester Main Examinations, May-2017

Finishing School - IV : Technical Skills

Time: $11 / 2$ hours
Max. Marks: 35
Note: Answer ALL questions in Part-A and any FIVE from Part-B
Part-A ($5 \times 2=10$ Marks)

1. Explain what happens when the following code is executed
$x=0: 0.1 \pi: 2 \pi$;
$y=\sin (x)$;
plot $\left(x, y,{ }^{\prime}: x b^{\prime}\right)$;
2. Explain what happens when the following code is executed
$x=0: 5$
$y=[1.5,1.0,0.9,0.6,0.3,0] ;$
polyfit($x, y, 1$);
3. Explain what happens when the following code is executed
$y=\exp \left(3^{*} x\right)$
$\operatorname{diff}(y, 2)$
4. Compute the output of the following code
$f=@(x)\left(x . \wedge 2+3^{*} x+2\right)$
quad(f,1,4)
5. Explain what happens when the following code is executed
$x=0: 0.1: 1$;
$y=x$. ${ }^{\wedge}$;
$\operatorname{trapz}(x, y)$
Part-B ($5 \times 5=25 \mathrm{Marks}$)
6. a) What is the output of the following lines of code is executed
$x=0: 0.01 \pi: 2 \pi$;
$y=\cos (3 * x)$;
$p \operatorname{lot}\left(x, y,--* g^{\prime}\right)$;
b) Write a MATLAB program to make plots of $\cos (4 * x), \sin (x)$ and $\sin (3 x)$ in the same figure with the following specifications:
i) range of values of x is from 0 to 2π in steps of 0.01π
ii) title for the figure and labels for x and y axes.
iii) the plots of $\cos (4 * x), \sin (x)$ and $\sin (3 x)$ are shown in magenta, cyan and red colors respectively.
7. a) Compute the output of the following lines of code
$x=0: 5$
$y=[30,20,18,12,4,0]$;
new_ $x=\operatorname{interp} 1(x, y, 3)$;
fprintf $\left(1,{ }^{\prime}\right.$ newx $\left.=\% f \backslash n^{\prime}, n e w _x\right)$;
b) Consider the x and y values shown in the table below. Write a MATLAB program to use to linear interpolation to approximate $y_{\text {new }}$ values for $x_{\text {new }}$ values evenly spaced between 1 and 10 at intervals of 0.1.

x	1.0	2.0	3.0	4.0	5.0	6.0	7.0	8.0	9.0	10.0
y	4.6	9.0	12.0	16.4	22.2	28.0	35.4	39.6	40.0	44.0

8. a) Write a sample MATLAB program illustrating the use of ode 45 function. Explain your steps in detail.
b) Write a MATLAB program to solve $\frac{d y}{d t}=2 t$ numerically using the initial condition $y(-1)=1$ and to plot t vs y.
9. a) Explain what is a parabolic partial differential equation, citing a suitable example.
b) Write a MATLAB program to solve the partial differential equation using MATLAb function pdepe.
$\pi^{3} \frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial z^{2}}$ subject to $u(z, 0)=\sin (\pi z) \quad ; u(0, t)=0$ and $\pi e^{-t}+\frac{\partial u}{\partial z}(1, t)=0$
10. a) Citing a suitable example, explain how numerical integration is carried out using the MATLAB function quadl.
b) Write a MATLAB program to compute $\int_{2}^{5}\left(3 x^{2}+5 x+4\right) d x$ by Simpson's rule .
11. a) Write a MATLAB program to make plots of $\sin (2 * x)$ and $\cos (2 * x)$ in the same figure with the following specifications:
i) range of values of x is from 0 to 2π in steps of 0.01π
ii) provide title for the figure and labels for x and y axes.
iii) plot of $\sin (2 * x)$ to be in red color using a solid line
iv) plot of $\cos (2 * x)$ to be in blue color using a dashed line
b) Write a MATLAB program to fit a second order curve for the following data

x	0	1	2	3	4	5
y	1.5	1.0	0.9	0.6	0.2	0

12. Answer any two of the following questions:
a) Write a MATLAB program to solve the third order ODE $\frac{\partial y}{\partial x}+3 y=e^{-2 t}$ subject to the condition $y(0)=1$
b) Explain the steps in solving a partial differential equation using MATLAB pde toolbox.
c) Write a MATLAB program to compute $\int_{0}^{2}\left(x^{3}+4 x-3\right) d x$ by Trapezoindal rule.
