	Code No.: 32017 T	S
W.	VASAVI COLLEGE OF ENGINEERING (Autonomous), HYDERABAD B.E. (Civil Engg.) III Year II-Semester Main Examinations, May-2017	
Т	Finishing School - IV: Technical Skills me: 1 ½ hours Max. Marks: 35	
* 1	Note: Answer ALL questions in Part-A and any FIVE from Part-B	
	$Part-A (5 \times 2 = 10 Marks)$	
1.	Explain what happens when the following code is executed $x = 0:0.1\pi:2\pi$; $y = \sin(x)$; $plot(x, y, ': xb')$;	
2.	Explain what happens when the following code is executed $x = 0.5$ $y = [1.5,1.0,0.9,0.6,0.3,0];$ $polyfit(x,y,1);$	
3.	Explain what happens when the following code is executed $y = exp(3*x)$ $diff(y,2)$	
4.	Compute the output of the following code $f = @(x) (x.^2+3*x+2)$ $quad(f,1,4)$	
5.	Explain what happens when the following code is executed $x = 0:0.1:1;$ $y = x.^3;$ $trapz(x,y)$	
	Part-B $(5 \times 5 = 25 Marks)$	
6.	a) What is the output of the following lines of code is executed $x = 0:0.01\pi: 2\pi$; $y = cos(3*x)$; $plot(x, y, '*g')$;	[2]
	b) Write a MATLAB program to make plots of $cos(4 * x)$, $sin(x)$ and $sin(3x)$ in the same figure with the following specifications:	[3]
	i) range of values of x is from 0 to 2π in steps of 0.01π	
	 ii) title for the figure and labels for x and y axes. iii) the plots of cos(4 * x), sin(x) and sin(3x) are shown in magenta, cyan and red colors respectively. 	
7	a) Compute the output of the following lines of code $x = 0:5$ $y = [30,20,18,12,4,0];$ $new_x = interp1(x,y,3);$ $fprintf(1,'newx = \%f \setminus n',new_x);$	[2]

Code No.: 32017 TS

[5]

b) Consider the x and y values shown in the table below. Write a MATLAB program to use to linear interpolation to approximate y_{new} values for x_{new} values evenly spaced between 1 and 10 at intervals of 0.1.

X	1.0	2.0	3.0	4.0	5.0	6.0	7.0	8.0	9.0	10.0
y	4.6	9.0	12.0	16.4	22.2	28.0	35.4	39.6	40.0	44.0

- 8. a) Write a sample MATLAB program illustrating the use of *ode45* function. Explain your steps in detail. [2]
 - b) Write a MATLAB program to solve $\frac{dy}{dt} = 2t$ numerically using the initial condition [3] y(-1) = 1 and to plot t vs y.
- 9. a) Explain what is a parabolic partial differential equation, citing a suitable example. [2]
 - b) Write a MATLAB program to solve the partial differential equation using MATLAb [3] function pdepe. $\pi^3 \frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial z^2} \text{ subject to } u(z,0) = \sin(\pi z) \quad ; u(0,t) = 0 \text{ and } \pi e^{-t} + \frac{\partial u}{\partial z}(1,t) = 0$
- 10. a) Citing a suitable example, explain how numerical integration is carried out using the [2] MATLAB function quadl.
 - b) Write a MATLAB program to compute $\int_2^5 (3x^2 + 5x + 4) dx$ by Simpson's rule . [3]
- 11. a) Write a MATLAB program to make plots of sin(2 * x) and cos(2 * x) in the same [2] figure with the following specifications:
 - i) range of values of x is from 0 to 2π in steps of 0.01π
 - ii) provide title for the figure and labels for x and y axes.
 - iii) plot of sin(2 * x) to be in red color using a solid line
 - iv) plot of cos(2 * x) to be in blue color using a dashed line
 - b) Write a MATLAB program to fit a second order curve for the following data [3]

X	0	1	2	3	4	5
У	1.5	1.0	0.9	0.6	0.2	0

- 12. Answer any two of the following questions:
 - a) Write a MATLAB program to solve the third order ODE $\frac{\partial y}{\partial x} + 3y = e^{-2t}$ subject to the condition y(0) = 1
 - b) Explain the steps in solving a partial differential equation using MATLAB pde toolbox.
 - c) Write a MATLAB program to compute $\int_0^2 (x^3 + 4x 3) dx$ by Trapezoindal rule.